可约可空降可一一平台,全国24小时免费空降,全国同城空降服务平台官网,全国各地空降上门服务

Home > Faculty > Full-Time Faculty > Associate Professors /Teaching Associate Professor > Associate Professors >

Lei Wei

Research direction:Flow battery、Electrochemical energy storage system

Postbox:weil@sustech.edu.cn

Personal Homepage

Dr. Lei Wei received his Ph.D. in mechanical engineering from Hong Kong University of Science and Technology (HKUST) in 2017. He was a postdoctoral research fellow at HKUST Energy Institute from 2018 to 2021. His research interests mainly include the development of materials and devices for flow batteries and electrochemical energy storage systems. He has published more than 70 research articles in journals such as Energy Storage Materials, International Journal of Heat and Mass Transfer, Science Bulletin, etc. His Google Scholar Citation is over 2600 times and his H-index is 28. He has been serving as a long-time reviewer for SCI journals such as Applied Energy and Applied Thermal Engineering.

Research Area:
◆Mass transfer and energy conversion characteristics of redox flow batteries;
◆Development of commercial flow battery stacks;
◆Study on combined energy storage system of hydrogen storage and inorganic e-fuel;
◆Energy storage policy and market demand analysis under emission peak and carbon neutrality.

Work Experience:
◆Oct.2021-present, Research Associate Professor, Department of Mechanical and Energy Engineering, Southern University of Science and Technology.
◆Mar.2021 to Sep.2021, Associate Professor, School of Materials and Energy Engineering, Guangdong University of Technology.
◆Feb.2018 to Feb.2021, Postdoctoral Fellow, Energy Institute, Hong Kong University of Science and Technology.

Education:
◆Ph.D.2017, Department of Mechanical Engineering, Hong Kong University of Science and Technology.
◆M.S.2013, Power Engineering and Engineering Thermophysics, Xi'an Jiaotong University, China.
◆B.S.2009, Department of Materials Science and Engineering, Xi'an Jiaotong University, China.

Professional Recognition:

◆Core member of Advanced Energy Storage Technology Laboratory, Southern University of Science and Technology.
◆7 papers were selected as ESI highly cited papers.

Representative Papers:
◆ L. Wei, T.S. Zhao, G. Zhao, L. An, L. Zeng. A high-performance carbon nanoparticle-decorated graphite felt electrode for vanadium redox flow batteries. Applied Energy. 2016;176:74-9.
◆ L. Wei, T.S. Zhao, Q. Xu, X.L. Zhou, Z.H. Zhang. In-situ investigation of hydrogen evolution behavior in vanadium redox flow batteries. Applied Energy. 2017;190:1112-8.
◆ L. Wei, C. Xong, H.R. Jiang, X.Z. Fan, T.S. Zhao. Highly catalytic hollow Ti3C2Tx MXene spheres decorated graphite felt electrode for vanadium redox flow batteries. Energy Storage Materials. 2019; 25: 885-892.
◆ L. Wei, T.S. Zhao, L. Zeng, Y.K. Zeng, H.R. Jiang. Highly catalytic and stabilized titanium nitride nanowire array-decorated graphite felt electrodes for all vanadium redox flow batteries. Journal of Power Sources. 2017;341:318-26.
◆ L. Wei, T.S. Zhao, L. Zeng, Y.K. Zeng. Copper nanoparticle-deposited graphite felt electrodes for all vanadium redox flow batteries. Applied Energy. 2016;180:386-91.
◆ L. Wei, M.C Wu, T.S. Zhao, Y.K. Zeng, Y.X. Ren. An aqueous alkaline battery consisting of inexpensive all-iron redox chemistries for large-scale energy storage. Applied Energy. 2018;215:98-5.
◆ L. Wei, L. Zeng, M.C Wu, H.R. Jiang, T.S. Zhao. An aqueous manganese-copper battery for large-scale energy storage applications. Journal of Power Sources. 2019;423:203-210.
◆ L. Wei, L. Zeng, M.C. Wu, X.Z. Fan, T.S. Zhao. Seawater as an alternative to deionized water for electrolyte preparations in vanadium redox flow batteries. Applied Energy. 2019;251:113344.
◆ L. Wei, H.R. Jiang, Y.X. Ren, M.C Wu, J.B. Xu, T.S. Zhao. Investigation of an aqueous rechargeable battery consisting of manganese tin redox chemistries for energy storage. Journal of Power Sources. 2019;437: 226918.
◆ L. Wei, T.S. Zhao, L. Zeng, X.L. Zhou, Y.K. Zeng. Titanium Carbide Nanoparticle‐Decorated Electrode Enables Significant Enhancement in Performance of All‐Vanadium Redox Flow Batteries. Energy Technol-Ger. 2016;4:990.
◆ L. Wei, X. Fan, H. Jiang, K. Liu, M. Wu, T. Zhao, Enhanced cycle life of vanadium redox flow battery via a capacity and energy efficiency recovery method, Journal of Power Sources, 2020; 478; 228725.
◆ L. Wei, Z.X. Guo, J. Sun, X.Z. Fan, M.C. Wu, J.B. Xu, T.S. Zhao. A convention enhanced flow field for aqueous redox flow batteries. International Journal of Heat and Mass Transfer,2021; 179, 121747.

主站蜘蛛池模板: 夹江县| 江永县| 达尔| 九江市| 鲁甸县| 凌海市| 泸西县| 鄂托克旗| 沐川县| 岚皋县| 左云县| 新巴尔虎右旗| 昆山市| 江陵县| 防城港市| 宁强县| 乌恰县| 晋城| 富锦市| 海盐县| 寻乌县| 南城县| 长岛县| 长沙市| 吐鲁番市| 泰兴市| 江源县| 太仓市| 新平| 长子县| 安多县| 高陵县| 大关县| 仁化县| 屯门区| 昌吉市| 张家界市| 双峰县| 清水河县| 都安| 巩留县|